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ABSTRACT 

Alternative  time-  and  frequency-domain  equations  are  presented  for  predicting  the 
loudness of a  wide  variety of statistically  stationary and nonstationary  sounds,  either 
continuous or  discontinuous.  Zwislocki's  theory of temporal  summation and S. S. 
Stevens'  psychoacoustic  conversion  law are incorporated in the  present  mathematical 
theory.  Frequency  domain  formulas of Zepler and  Hare1 for  impulsive  sonic  booms and 
Jones  for  steady  noise  represent  specializations of the  present  formulas.  For  sinusoi- 
dal  inputs,  modified  Fletcher-Munson  auditory  response  curves  are  predicted.  For  an 
impulsive  input  the  measured  response  is  also  predicted. 
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PHENOMENOLOGICAL THEORY OF LOUDNESS 
by Walton L Howes 

Lewis  Research  Center 

SUMMARY 

A unified theory is derived which should  permit  the  loudness of most  sounds,  continuous  and 
discontinuous,  to be predicted  from known time  or  frequency  characteristics of the sound. It is 
assumed that the input sound  intensity  averaged  over a finite  time is uniquely related  to  loudness. 
This  relation is modified to  include  operational  processes by which the human  auditory  system 
converts  intensity  into  loudness.  The  processes by which the input pressure  signal is transmitted 
to  the  brain  are  assumed  to be linear. However, the  conversion  from a physical  (neurological) 
signal  into  psychological  response  (loudness), which occurs in the  brain, is nonlinear. 

Physically,  the input  sound pressure wave is linearly converted in successive  steps  into  an 
electrical wave,  which reproduces  the  original  waveform, by hair cells within the organ of Corti. 
Next, the  auditory  nerve  endings  respond  to  the  time  rate of change of this current  rather  than  to 
the  current  itself.  The  resulting  information is transmitted  to  the  brain along the  auditory  nerve. 
This  information is evaluated  in  the  brain  and  subjectively  interpreted as loudness. 

Mathematically,  the  time  domain  representation of the  current output of the hair cells is a 
Fourier convolution of the  impulse  response of the  entire  preceding  system with the  original input 
sound.  The response of the auditory  nerve endings corresponds  to  time  differentiation of the 
Fourier convolution. The  signal  transmitted  to  the  brain  contains  information  regarding  "elec- 
t r i c  power, t which is assumed  to be uniquely related  to  loudness.  The  loudness is a function of 
a finite-time  integral of the  power.  The  conversion  from  physical  output  to  psychoacoustic  re- 
sponse is accomplished by using s. s. Stevens'  psychoacoustic  conversion law. The  frequency 
domain  representations of these  processes are derived by using  Fourier  series  and  transforms. 
The  fact that the  loudness is a function  taken  over  finite  times  implies  that  the  frequency  repres- 
entations  can be written  in  terms of "running" Fourier  transforms.  The  complete  history of the 
loudness is predicted. 

The  complete  auditory  system  must  act as a nonideal,  band-pass,  filter.  The  response of a 
selected  filter  characterizes  the  system. Part of the  selected  response function  may be attrib- 
uted  to  the  time  differentiation  process.  The  rest of the  function is a generalization of that ob- 
tained by Zwislocki in his theory of temporal  auditory  summation.  Thus,  Zwislocki's  theory is 
implicit  in the present one. 

The  present  theory  was  tested  using two fundamental  inputs,  sine  waves  and  impulses.  For 
sine wave inputs  the  theory  predicts  the  Fletcher-Munson  frequency  response  curves  minus a dif- 
fraction  correction  for  the  disturbance  created by the human head. For  impulsive  inputs  the 
theory  predicts  loudness  proportional  to the intensity, as measured. 

Frequency  domain  formulas of Zepler  and Hare1 for'  impulsive  sonic booms  and  Jones  for 
steady  noise  represent  specializations of the  present  formulas. 



INTRODUCTION 

Well-known empirical  methods  exist  for  predicting  the  loudness of certain statisti- 
cally  stationary  sounds (refs. 1 to 3), that is, of certain  sounds whose statistics are in- 
dependent of time. Methods for  predicting  the  loudness of certain  statistically  nonsta- 
tionary  sounds  may  be less well known (refs. 4 to 6). No means exists for  predicting  the 
loudness of all sounds of either statistical class.  Moreover, no single  scheme  has been 
shown to  predict  correctly  the  loudness of some  sounds in both classes.  The  main  de- 
terrent in  developing a unified  theory of loudness  appears  to be an  impression  that  the 
complete  auditory  system is so complex  that a concise  mathematical  representation of 
the  entire  system is not feasible (ref. 6), and  that,  because  the  psychoacoustic  response 
to  an  acoustic input is highly nonlinear,  Fourier  analysis is not readily  applicable  to  the 
entire  system (refs. 6 and 7). Thus,  there would seem  to be an  inherent  difficulty  in re- 
lating  time  and  frequency  representations of psychoacoustic  response  to a given  acoustic 
input.  The  main  purpose of this  report is to show  that a practical  unified  theory of loud- 
ness  based on Fourier  methods is possible  and  that  the  theory  proposed  herein  leads  to 
predictions  in good agreement with  experiment. 

The theory  to be described  resulted  from a desire  to  obtain  alternative  time  and 
frequency  descriptions of the  loudness of sonic booms  produced by supersonic  aircraft. 
Such a theory  might be useful  in  determining  the  extent  to  which  undesirable  human re- 
sponse  to  sonic booms  could be  minimized by controlling  the boom pressure  signature 
(ref. 8). The  present  theory  appears  to have  much broader  validity  than  originally  in- 
tended. 

There are at least  three  forms of theory which  might be developed,  namely, one 
based on the  physics and  psychophysiology of the  ear,  nervous  system and  brain, a phe- 
nomenological  theory in which the  major  elements of the  complete  auditory  system are 
represented by simplified  mathematical  models, or  a completely  empirical  theory  in 
which each input is directly  associated with an  ultimate output response as determined 
experimentally.  The  first  form of theory is likely  to  get bogged down by physical  and 
mathematical  complexities.  The  last  form of theory  (empirical) is ,likely  to be imprac- 
tical  because new response  tests would have to be performed  for  each new waveform. It 
is not likely  that  such a theory would improve  understanding of the  hearing  process. 
However, in cases  where  very  rapid  pressure  changes  are  the  overwhelming  determinant 
of response (as in the  case of sonic  booms),  the  empirical  approach  may  still  prove  com- 
pletely  satisfactory  for  engineering  calculations.  Herein  the  phenomenological  approach 
has been  adopted  with  the  hope  that  it  will  lead to  reasonably  accurate  estimates of re- 
sponse  to a variety of input  signatures  based on simple  mathematical  representations of 
the  operational  characteristics of the human auditory  system. 

The  complete  auditory  system  consists of three  principal  elements:  the ear, the 
nervous  system,  and  the  brain  (fig. 1). The  primary  operational  functions of the ear, 
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Figure 1. -Auditory system. 

nervous  system,  and  brain  are  assumed  to be,  respectively,  pressure  amplification; 
physical  conversion,  filtering and time  differentiation;  and  autocorrelation and ??psycho- 
physical  conversion"  (fig. 2). The  "physical  conversion" is from a sound wave to 
mechanical  pressure  to a hydrodynamic wave  and, finally, to an  electrical wave. "Fil- 
tering"  simply  implies  that all the  energy of the  incident  sound waves is not transmitted 
to  the  brain.  "Autocorrelation"  concisely  describes  the  mathematical  process of inte- 
grating  the "power"  with respect  to  time.  The  term  "psychophysical  conversion" is in- 
tended  to  imply  the  conversion of a signal  magnitude  from  objective,  physical  measure  to 
subjective,  psychological  measure;  that is, from  physical  intensity  to  loudness  in  the 
case of statistically  stationary  sounds. 

In the ear (refs. 3 and 9 to 11) (see  fig. 1) the sound pressure  fluctuations in the at- 
mosphere  are  mechanically  amplified by the  eardrum and ossicles  into hydrodynamic 
pressure waves  within  the  cochlea.  The  conversion  into  hydraulic  waves  occurs at the 
oval window. Within the  cochlea  the  hydraulic  pressure  waves  are  further  converted  into 
electrical waves by hair  cells  in  the  organ of Corti.  These  waves are  reproductions of 
the  original  sound  pressure  waveform (ref. 3, p.  109f). At the  auditory  nerve  endings, 
the  electrical  waves  are  then encoded as electrical  impulses of uniform  amplitude which 
are  transmitted  to  the  brain  through a bundle of nerve  fibers  comprising  the  auditory 
nerve. It appears  from  the  uniform  amplitude  pulse code signals  that.the  auditory  nerve 
can  be  regarded as a lossless  transmission  line.  The  amplitude of the  electrical wave 
must  exceed a certain  threshold  value  in  order  to  produce  an  impulse  in  the  auditory 
nerve. But most  importantly  the  time rate of change of the  electrical  signal  determines 
the  number of nerve  fibers  along which  the  impulses will be transmitted (ref. 3, p. 112). 



The  continued  change of wave  amplitude  produces  successive  impulses  in  each  nerve 
fiber.  The  number of fibers which transmit  impulses  to  the  brain  determines  the loud- 
ness of the  original  sound, as subjectively  interpreted in the  brain. It seems  reasonable 
to  expect  that  the  concept of "electric  power"  (output  from  the  hair  cells)  can be associ- 
ated  with  one  aspect of the  information  transmitted  to  the  brain  and  that  this power  inte- 
grated  over a finite  time  duration is uniquely  related  to  loudness.  The well-known time 
integration of the  signal  probably  occurs  in  the  brain. 

The  preceding  paragraphs  outline  the  processes  that  will  serve as the  basis  for a 
theory of loudness.  Although  the  various  mathematical  operations  will be associated 
with  specific  elements of the  auditory  system,  possible  incorrect  associations (ref. 11) 
are not likely  to  affect  the  theory as long as the  assumed  operations  do  occur  essentially 
in  the  order  described. 

The  theory  will be developed  according  to  the  following  procedure.  The  loudness is 
assumed  to be uniquely  related  to  the  sound  intensity  integrated  over a finite time,  the 
auditory  integration  time.  This  average  sound  intensity is expressed as a function of the 
sound pressure  history  (time  domain), or, alternatively, as a function of the  sound  pres- 
sure  spectrum  (frequency  domain).  (The  time  and  frequency  domain  analyses will be 
presented  consecutively,  rather  than in parallel. ) Next, the  operational  characteristics 
(pressure  amplification,  physical  conversion,  filtering,  and  time  differentiation) of the 
auditory  system are introduced.  Information  regarding  the  original  sound  intensity  ulti- 
mately  appears in the  brain as information  regarding  the  finite-time-average  electric 
power  reaching  the  auditory  nerve.  This  power is expressed  mathematically in both 
time-  and  frequency-domain  representations.  The  power  formula is made  more  explicit 
by specifying  the  filter  characteristics of the  auditory  system  in  analytical  form. Fi- 
nally,  the  psychoacoustic  response  called  loudness is related  to  the  power by applying 
Stevens'  law (ref. 12). This  completes  the  process of relating  the  sound  pressure  to 

Auditory Cochlea 
Organ of Corti 

nerve (hair  cells) component: 
Auditory 

Form of signal: Sound Mechanical Hydrodynamic Electric  current  Electric Subjective  loudness 
pressure  pressure  pressure impulses 

Operational 
process: 

Physical Physical Physical  conversion Differentiation Time integration and  psycho- 
conversion conversion (low-pass filter) (high-pass  filter) physical  conversion 

In time domain: pW =p(t) =pea j(t) = K / ,  h(t - 
t 

Figure 2. - Proposed  model of auditory system. 
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loudness  through a chain of operations  which  presumably  occur  in  the  auditory  system 
and  brain. 

The  succession of auditory  components,  the  operational  processes  they  perform, 
and  the  corresponding  physical  and  mathematical  representations of the  processes are 
diagramed in figure 2. 

PHYSICAL QUANTITIES RELATED TO LOUDNESS 

It is assumed  that  the  subjective  psychoacoustic  quality  called  loudness is a single- 
valued  function of the  finite-time-averaged  intensity of the  sound input at the ear. 
S. Lifshitz (ref. 13) appears  to  have  been  the first to  propose  this  relation. Its validity 
is well established (refs. 1, 3, 12, 14, and 15). Specifically,  the average acoustic in- 
tensity  over all time  (average  energy  flux  over all time), 

" 

Q = pvn 

usually  serves as a physical  measure  uniquely  associated  with  loudness. In equation (l), 
p is the  acoustic  pressure, vn is the  normal component of acoustic  particle  velocity 
through a control  surface having  unit area, and the  overbars  denote  infinite  time aver- 
ages. (All symbols are defined in appendix A. ) At distances  from  the  sound  source 
which are large  in  comparison  with  the  extent of the  source,  equation (1) is approximated 
by the well-known plane-wave  relation 

which in more  detailed  form is written as 

where t is time, p is the  atmospheric  density, and c is the  speed of sound. For sta- 
tionary  sounds,  equation (3) determ.ines  an  adequate  physical  measure of loudness. How- 
ever,  for  momentary  sounds,  such as sonic  booms,  the  intensity 9 averaged  over all 
t ime is an  unsatisfactory  physical  measure of loudness  because 9 may  vanish.  Even 
for  statistically  stationary  sounds,  practical  necessity  requires  that  the  averaging  time 
be finite. In audition a close  approximation  to 5, both physically  and  psychologically, 
is obtained  for  averaging  times less than a second.  Let 5 denote  this average, where 

- 
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the  tilde  indicates  that  the  average is taken  over a finite  time  duration tl. Then  the  av- 
erage intensity 

is a practical  physical  measure of loudness  for  continuous  sounds,  regardless of their 
time  dependence (i. e., statistics).  For  statistically  stationary  sounds, 5 is independ- 
ent of t. 

Equation (4) as it stands cannot be correct, or at least complete.  To  illustrate  this, 
consider  the  following  example.  Suppose  that  throughout  an  arbitrary  auditory  integra- 
tion  interval tl, p(t) = Constant # 0. Equation (4) indicates  that  the  auditory  response 
would be nonvanishing  and,  hence,  that  auditory  response  occurs. In fact,  auditory re- 
sponse  does not occur  in  this  circumstance.  Thus,  equation (4) must  be  incomplete, or 
incorrect.  This  difficulty  will be eliminated when the  operational  characteristics of the 
human  auditory  system are considered. 

PHY SlCAL INPUT-OUTPUT  RELATIONS 

Equation (4) is incomplete  because it does not include  operational  characteristics of 
the  auditory  system;  namely,  the  pressure  amplification  induced in the  middle ear, the 
physical  conversion  from a pressure  signal  to  an  electrical  signal by the  hair  cells in 
the  inner ear, and  the  response  to  time  rates of change of electrical  current by the  audi- 
tory  nerve  endings. By assuming  that  these  processes  are  linear,  they  can be readily 
treated  analytically.  (Linearity was previously  assumed  in  the  loudness  theory of B k k ,  
Kotowski,  and Lichte  (ref. 5) and is indicated by measurements  (ref. 3, p. 110).) 

The  successive  operations  performed by the  auditory  system involve transfer func- 
tions  which  relate  the  input  and output signal  amplitudes.  Because  the  auditory  system 
does  not  constitute an all-pass  filter,  part of the  energy of the  input  signal  does not 
reach  the  brain.  The  complete  auditory  system  acts  essentially as a quasi-linear band- 
pass  filter.  For  humans  the  pass band extends  roughly  from 20 to  20 000 hertz. Any 
linear  filter is characterized by two alternative  quantities;  namely,  the  frequency  re- 
sponse  function H(w) and its Fourier  transform,  the  impulse  response  function  h(t). 
Specifically, 

H(w) = lmm h(t)e-iwt  dt 
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which  may be denoted by 

where o is the  angular  frequency.  The  frequency  response  function H(w) describes 
the filter output for a sinusoidal  input;  the  impulse  response  function h(t) describes  the. 
filter output for an impulsive  input  (delta  function). 

Time-Domain Analysis 

The  hydrodynamic pressure  fluctuations in the  cochlea  are  assumed  to be propor- 
tional  to  the input atmospheric  pressure  fluctuations. Next in  succession,  the  electrical 
output of the  hair  cells in the inner  ear is assumed  to be proportional  to  the hydrody- 
namic  pressure  fluctuations.  These  proportionality  constants  can be  lumped  into a 
single  constant K .  Hence, for  an  arbitrary  sound  pressure input  p(t) to  this  linear  sys- 
tem,  the  resulting  electric  current output j(t) from  the  hair  cells is simply  given 
(ref. 16, p. 83) in the  time  domain by 

j(t)  = K / h(t - T)P(T)dT 
co 

- m  

which are alternative  expressions.  The  current j(t) reaches  the  auditory  nerve  endings. 
But the  auditory  nerve  endings  respond  to  the  time rate of change of this  current  (ref. 3, 
pp. 112, 259), rather than  to  the  current  itself.  Thus,  the  information  transmitted  to 
the  brain along the  auditory  nerve  concerns 
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1 

rather  than j(t). 
At the  outset it was emphasized  that  loudness is uniquely  related  to  the  intensity of 

the  sound input. After  the  hydrodynamic  wave is converted  into  an  electrical  wave,  elec- 
t r ic  power n, which is proportional  to  the  acoustic  intensity 'k, replaces  intensity as 
the  appropriate  physical  measure of loudness.  The outpEt of the hair cells is a repro- 
duction of the  original  sound  waveform.  Thus, in parallelism  with  equation (4), the 
finite-time-average electric power output of the  hair  cells IIc(t) is given by 

N 

where  an  electrical  resistance R has  been  introduced  to  give  the  equation  dimensions of 
power. When the  response  characteristics of the  auditory  nerve  endings are included, 
equation (9) must  be  replaced by 

2 
d r  

where 5 j(7) is given by equations (8). Tnformation regarding  this power is trans- 
mitted  to  the  brain  along  the  auditory  nerve.  The  mode of transmission is essentially 
lossless  and  need  not be specified in the  present  theory. 

d 

In summary,  equations (8) and (10) relate the input sound pressure  to  the  electric 
power  reaching  the  auditory  nerve.  Information  regarding  this  power is transmitted  to 
the  brain,  wherein  the  information is interpreted as possessing  the  subjective  quality 
called  loudness. 

The  preceding  theory is specified in the  time domain.  The  corresponding  results 
will now be derived  for  the  frequency  domain. 

Frequency-Domain  Analysis 

In the  frequency-domain  representation,  the  electric  power is to be expressed as a 
function of the  sound  pressure  spectrum P(w), which is the  Fourier  transform of the 
sound pressure  history, o r  signature p(t). In other  words, 
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Because  the  auditory  integration  period tl is finite,  the  nature of the  sound  pressure 
spectrum  after  passage of a finite  time  may  sometimes be of interest.  This  so-called 
(?runningff spectrum P(0, t) is given by (ref. 16, p. 148f) 

t 
P ( w ,  t) = f p(-r)e-iWT d7 

--oo 

or 

where 

Also, 

The  running  pressure  spectrum P ( w ,  t) is a function of P ( w )  (ref. 16, p. 149). Specif- 
ically, 

relates  the two spectra,  where 6 is the  unit  impulse  function. Tn particular, 

Similar  relations  apply for the  current.  Thus,  the  current  possesses a spectrum J(w) 
given by 

as well as a running  spectrum, 

J(w, t) - O ( t  - 7)j(7) 



Equations (15) and (16), with P replaced by J, also  apply. 
In the  time-domain  representation,  the  current is related  to  the  pressure  according 

to equation (7). The  corresponding  frequency-domain  representation is (ref. 16, p. 86) 

As shown in appendix B, the  running  current  spectrum  may be expressed in te rms  of the 
response  functions  and  pressure input by 

J(w,t)  = K f H(w, t - r)p(r)e d7 - iwr 
-m  

J(w,  t) = ~ J 6 m  h(r)P(w, t - r)e - i w r  d7 

where 

and H(w, t) is the  running  frequency  response  function. In parallel  with  equation  (16), 
H(w, t = m) = H(w). More  generally,  equation (15) applies with P replaced by  H. 

It is noteworthy  that  the  integrands in equations (20) consist of products of time and 
frequency  functions. If t -. 03, and h(T) and p(r) - 0 as T - m, equations (20) reduce 
to equation (19). Even  more  importantly  from  the  standpoint of steady  noise, if 
H(w,  t - T )  is effectively  constant  throughout  the  interval (-m, t), except  for a short  time 
t - T << tl (where, as before, tl  -is the  auditory  integration  period),  equations (20) re- 
duce  to 

which  involves  the  running  spectrum P(w,  t), rather  than  the  ordinary  spectrum P ( w )  
contained in equation (19). 

In determining  the  electric  power,  the  time  derivative of the current,  rather  than 
the  current itself, is most  significant.  The  frequency-domain  representation of this 
derivative is given by the  Fourier  transform 

- d j(t)  - ioJ(w) 
dt 
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However, the  loudness is determined by the electric power  integrated  over a finite  time 
interval tl (cf. eq. (10)). Hence, the  running  transform of the  time  derivative  applies. 
The running transform is given by 

- [0(t - -r)j(r)] - i w J ( w , t )  d 
d r  

In expanded form,  namely 

the  left-hand  side of equation (24) is seen  to  include  an  impulsive  transient  associated 
with  switching off the  integration.  The  existence of this  transient is independent of the 
specific  time  dependence of j(t).  Hence,  the  transient is not  determined by the  input. 
The  transient is not associated  with  the  human  auditory  system  because  the  human  mind 
detects no subjective  loudness of an  impulsive  nature  associated  with  initiation or  termi- 
nation of the  auditory  integration  process.  The  auditory  system  remains  in  the "on" 
state all the time.  Thus, this "switching" transient is unphysical  and  should be omitted 
in  computing  the  power.  The  switching  transient is purely a consequence of the  mathe- 
matics of the  Fourier  transform  and  does not appear if a j(t) is represented by a 
Fourier  series  expansion  over  the  period tl. Finally,  equation ( lo) ,  the  original  time- 
domain  equation  for  the  power,  does not contain  switching  transients. 

d 

With the  switching  transients  eliminated it is shown in appendix C that, in the 
frequency-domain  representation,  the  electric  power is given by 

E(t) = 3 Sgl [I J(o,t) l 2  - I J(o,t - tl) I 2]w2 dw 
2n --03 

which, when accompanied by equations (20), expresses  the  average power as a function 
of the input pressure  history or its spectrum. Equation (26) exhibits a high-frequency 
weighting ( a w  ) of the  average power by virtue of the  nerve  endings'  response  to  the 
time  derivative of the  current.  Thus,  the  auditory  nerve  endings  act as high-pass 
filters. 

2 

The  integral  in  equation  (26)  may be divergent.  To  avoid  this  difficulty, a j(t) in 
equation  (10)  may  be  expanded as a Fourier  series  over  the  integration  interval.  The 
power is ultimately  expressed by the  sum of the  squares of the  Fourier  coefficients. 
This  approach is especially  useful when a j(t) is periodic.  The  case  where p(t) is a d 

pure  tone is considered  in  appendix D. B p(t) is unknown and  information is available 

d 
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regarding  the  spectrum, but the  integral in equation (26) is divergent,  then  methods de- 
scribed by Bennett (refs. 17 and  18)  may be used  to  evaluate  the power. 

The  resulting  power  formulas  may now be summarized. In the  time-domain  repre- 
sentation, 

Tf h(t)  and  p(t) a r e  both real, the  absolute  value  signs  in  equation (27) can, of course, 
be removed. In the  frequency-domain  representation, 

H(o,t  - tl - r)p(r)e drl]co2 d o  (28a) 

If the  sound  input is steady  noise and H(w, t - r) is effectively  constant,  except 
during  the  short  time  interval t - T << t l ,  then  equation (22) is valid. Therefore, 
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or 

follows from  equation (28a), where, by definition, 

Hc(w) = iwH(w) ( 30) 

and 

hc(t) = - h(t) d 
dt 

H h(t) and  p(t) are  quasi-impulsive,  that is, if h(t)  and  p(t) a r e  nonvanishing  only 
over a time  period  shorter  than  the  integration  time tl,  then  equations (28) simplify. 
Suppose  that p(t) is initiated at some  time to and is quasi-impulsive.  Assume  that to 
occurs within  the  auditory  integration  interval,  that is, t - tl 5 to < t. Then,  the  sec- 
ond time  integral in equations (28) vanishes.  Assume  that  p(t)  effectively  vanishes  per- 
manently  again at some later t ime t; less  than  the  upper  limit of integration,  that is, 
to < tb < t. Then, if the  running  frequency  response H(w, t) effectively  becomes inde- 
pendent of time  for  time  durations t - tb or larger,  that is, if  H(w, t - t;) = H(w), then 
H(w, t - 7) may  be  extracted  from  the  integrand of the first integral in equation  (28a). 
The  condition H(w, t - t;) H(w) corresponds  to h(T > t - tb) 0, and in conjunction 
with  causality  (to be discussed)  implies  that  h(t) is quasi-impulsive.  The  remaining 
integral  equals P ( w ,  t). But,  because  p(t)  effectively  vanishes  for t > tb, it follows 
that P(o, t) x P(w) .  Hence, equation (28a) reduces  to 

or 



Equation (28b) can  be  reduced  to  equations (33) by a similar  argument. 
In general,  the  response  Characteristics of the  complete  auditory  system are math- 

ematically  entangled  with  the  input  pressure.  However, in the  special case of equations 
(29) and (33), the  response  characteristics are separable  from  the input. Thus,  the 
quantities h,(t) and Hc(w) represent  the  response  functions  for  the  complete  auditory 
system  preceding  the  auditory  nerve. 

CAUSALITY AND THE PALEY-WIENER  THEOREM 

Tn the  preceding  section  the  electrical  power output  was  related  to  the  sound  pres- 
sure  input by introducing  response  characteristics of the  auditory  system.  The  next 
step is to  specify  the  response  characteristics  explicitly. However,  before doing s o  it 
is important  to  consider  the  consequences of causality  and  the  Paley-  Wiener  theorem  in 
this  regard.  The  Paley-Wiener  theorem not  only has a bearing on the  response  charac- 
terist ics but also provides  an  important  result  regarding  the  spectra of short  duration 
sounds. 

First, consider  causality.  Cause  precedes  effect.  Thus, if p(t) is initiated at 
some  time t = to, then j(t) = 0 for t < to. Without loss of generality,  one  can set 
t = 0. 
0 

A function  which  vanishes  for t < 0 is called  causal (ref. 16, p. 13).  The  impulse 
response  h(t) is causal (ref. 16, p. 85).  Hence, H(w, t) is also causal. It follows  from 
equations (7) and  (20),  respectively,  that j(t) and J (w ,  t) must be causal. 

Causality in conjunction  with  the  Paley-Wiener  theorem  (ref.  19, p. 16ff or ref. 16, 
pp. 215-217 and 222) leads  to  important  consequences  regarding  the  auditory  response 
characteristics as well as the  spectra of finite  duration  sounds.  The  Paley-Wiener  theo- 
rem  states  that, i f  

where F(w) is square  integrable,  that is, 

then f(t), which is the  Fourier  transform of F(w),  is causal. Note that, if F(w) van- 
ishes  over  any  nonvanishing  interval Aw, the  inequality  (eq.  (34)) is violated. There- 
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fore,  the  spectrum of any  causal  function  must be nonvanishing at all, except  possible 
discrete,  frequencies if the  spectrum satisfies the  inequality  (eq.  (35)). 

Let  the  auditory  impulse  response h(t) correspond  to f(t) and  the  frequency  re- 
sponse H(w) correspond  to F(w). From  the  Paley-Wiener  theorem it follows  that,  be- 
cause h(t) is causal,  the  auditory  frequency-response  function H(w) must be  nonvanish- 
ing  for all, except  possible  discrete,  frequencies.  This  means  that  the  auditory  re- 
sponse  cannot  be  represented by a simple  ideal  band-pass filter (ref. 20). 

Let  the  electric  current j(t) correspond  to f(t) and  the  current  spectrum J(w) cor- 
respond  to F(w).  Then,  because j(t)  is causal and J(o) is square  integrable  for  finite 
signal  amplitudes,  the  electrical output of the  hair  cells  associated  with  any  sound input 
must  include all, except  possible  discrete,  frequencies in the  audible  range. 

Finally, let the  sound  pressure  p(t)  correspond  to f(t) and  the  pressure  spectrum 
P(0) correspond  to F(o). If p(t) is causal and P ( w )  is square  integrable, P ( w )  must 
be nonvanishing  for all, except  possible  discrete,  frequencies.  The  sonic boom repre- 
sents  an  important  sound  satisfying  the  Paley-Wiener  conditions. Hence, the  production 
.of an  inaudible  sonic boom is impossible.  This  conclusion is reached without  even  taking 
account of the  auditory  system. 

In the  preceding  applications of the  Paley-Wiener  theorem  the  results  are  valid  in 
principle.  However,  the  amplitudes of the  response  functions  or  signals  have not been 
considered. By definition,  the  response  functions  vanish  outside  the  audible  frequency 
range.  Inside  the  audible  range  the  signals  may be too  weak to  produce  any  response. 

EXPLICIT FILTER CHARACTERISTICS OF THE AUDITORY SYSTEM 

The  filter  characteristics of the  auditory  system  can now  be specified  explicitly. In 
equations (30) and (31) the  response  characteristics of the  complete  auditory  system, 
namely  hc(t)  and Hc(w), have  been  specified as functions of h(t)  and H(o). Because 
the  auditory  system is assumed  to  perform  linear  filtering, it represents a stable  sys- 
tem in  the  sense  that its response  to  any bounded input is bounded. This  implies  that 
hc(t) is absolutely  integrable,  that is, 

or hc(t) -c 0 faster  than l/t as t - -. If hc(t) is absolutely  integrable, Hc(w) - 0 as 
I w I -c - by virtue of the  Riemann-Lebesgue  Lemma  (ref. 21), namely 
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hc(t)e-iwt  dt = 

Because  the  human  sensory  system is excited  only by time-dependent  inputs, it follows 
that Hc(0) = 0. The  quantity Hc(w) must,  therefore,  describe a band-pass  filter.  The 
human  auditory  system as a passive filter is causal.  The  causality  condition  in  conjunc- 
tion with the  Paley-Wiener  theorem  indicates that the  auditory  response  cannot be char- 
acterized by an  ideal  band-pass  filter  because  the  impulse  response of such a filter is 
acausal.  The  impulse  response at time t = 0 is given by 

hc(0) = 1 Hc(w)dw 
7T 

which follows from equation (32) and causality  and  where /?e denotes  the real part. 
Because  the  auditory  response is nonvanishing  in the  audible  frequency  pass-band, it . 
follows  that /?e I Hc(w) 1 > 0 for  0 < w < 00 because /?eHc(w) cannot  change  sign. 
Hence, 

To summarize: In attempting  to  relate its time- and frequency-response  characteristics, 
the  complete  auditory  system as a linear  system  corresponds  to a nonideal,  band-pass, 
filter. The associated  response  to  an  infinite  impulse is necessarily nonvanishing at the 
instant  the  impulse is applied, but vanishes  faster  than l/t as t - 00. 

The preceding  arguments  apply with respect  to  the  running  frequency  response 
Hc(w, t), as well as with respect  to Hc(o). Thus,  for  example, in terms of Hc(w, t), 

leads to 

Hence, 

hc(t) * 2 ReHC(w, 00) 2 ReHc(w) 

and  equation (38) follows by setting t = 0. 
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Response  functions of the  type  described  above are commonly  associated  with  multi- 
,$age amplifiers (ref. 22) wherein  the  frequency-response  function is represented by the 
ratio of polynomial  functions of frequency so that the  impulse  response is, then,  neces- 
sarily  described by decaying  exponential  functions of time. An appropriate  Fourier 
transform  pair is 

in  the  frequency  domain,  which  corresponds  to (ref. 23) 

hc(t) = O(t)A(w2 - w1)-l(w2 e 
- w1 e-*1t) 

(44) 

in the  time  domain,  where A is a constant  and w1 and w2 are the  pass-band cutoff 
frequencies.  These cutoff frequencies are properties of the  auditory  system.  Predict- 
ing the  values of these  frequencies  requires a more  detailed  physical  analysis of the 
auditory  system  than that provided  herein.  Moreover,  the cutoff frequencies, by defi- 
nition, are not directly  measurable but can  only  be  estimated  from  auditory  transmit- 
tance  curves.  From  equations (30) and (43) it follows  that 

which is the  transform of 

h(t) = O(t)A(w2 - e -""'> 

When w1 and w2 a r e  evaluated, it is found, in fact,  that  the  impulse  response h(t) is 
quasi-impulsive.  Equation (46) is identical  to  the  impulse  response  formula  for  nerves, 
as derived  from  physical  arguments by Zwislocki in his  "Theory of Temporal  Auditory 
Summation'?  and  confirmed by prior  experiments of Galambos on medullary  nerves 
(ref. 7). Equations (45) and (46) describe a low-pass  filter.  This  in  conjunction  with  the 
high-pass  weighting - due  to  the  auditory  nerve  endings'  response to pressure  rates of 
change,  rather  than  pressures - in  equation (26) causes  the  complete  auditory  system  to 
perform  band-pass  filtering, as indicated by equations (43) and (44). 

The  explicit  equation (46) for h(t)  may now be introduced  in  equations (27) to  pro- 
vide the  final  time-domain  formulation  for  the  electric  power.  Thus, 
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t 
N 

n(t) = K 2 2  A (w2 - Wl)-2Rtl 

r t  I 
N 2 2  -wl(r-?) 
II(t) = K A (w2 - wl)-2Rtl - w1 e p( ;)d; 1 

2 

d r  

Only the  sound  pressure  history  and  values of w1 and w2 need to be specified in order 
to complete  the  calculation of fi. 

To complete  the  frequency-domain  formulation  for II, the  running  response  function 
N 

H(w, t) must be written  explicitly  for  potential  introduction in equation  (28a). By virtue 
of equations (21) and (46), 

*2 - w1 ' e  + ' e  
- ( wl+iw) t  -(w2+iw)t 

w2 + iw) (wl  + iw)  w1 + i w  w 2 + i w  1 
(4 8) 

However , 

1 /2 

= w1 [' + e 
i0 

(49) 

where 

o1 = t a n  - -1 w (50) 

and  similarly  for w2 + iw.  Then, H(w, t) may be written in a form in  which its real  and 
imaginary  parts are easily  recognized,  namely 



- 1/2 - 1/2 
-i(e1+e2) 

H(w, t) = 

By comparing  the  time-dependent  terms in equation (51) with  the  time-independent  term 
it can be shown  that  the  time-dependent  terms are generally  significant  over a time less 
than 10 percent of the  integration  period tl. Hence, when considering  steady  noise,  the 
effect of the  time-dependent  terms  in H(w, t) can  be  neglected, so that  equations (29) are 
valid. 

More  generally, a frequency-domain  formulation  for II is obtained by substituting 
N 

the  preceding  expression  for H(w, t) in  equation  (28a).  The  result is lengthy  and  will  not 
be  written down. A simpler-looking  alternative is obtained by substituting  the  expression 
for h(t) given by equation (46) into  equation (28b). The  result is 

In the  special  case  where  h(t)  and  p(t) are quasi-impulsive,  equations (33b) and (43) 
apply.  Then, 
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PSYCHOACOUSTICAL  RELATIONS 

Expressions  have  been  obtained  for  the  electric  power  information  presumably re- 
ceived by the  auditory  nerve as a function of the  input  pressure  signature or spectrum 
and  the  physical  characteristics of the  auditory  system. In the  brain  the  information re- 
garding  this  objective  physical power is converted  into  subjective  responses,  such as 
loudness  and  annoyance, as well as into  other  objective  and  subjective  responses,  some 
of which may be classified as startle responses. Only  loudness will be evaluated  herein, 
but the  other  subjective  responses  may be evaluated in a similar  fashion (ref. 24). 

S. S. Stevens  has shown (refs, 24 and 25) for a wide  variety of psychophysical  phe- 
nomena  that, if cp is the  magnitude of a physical  stimulus and I) is a psychological 
magnitude  (determined by subjective  judgments),  then 

Q = kqm (54) 

where  k and m are  constants dependent on the phenomenon and often on the  individual 
as well. Equation (54) may  be  aptly  called  Stevens'  law. It supplants  the well-known 
Fechner law, 

Q = kf  In cp (55) 

which is experimentally  invalid  (ref. 26). 
If Stevens' law is applied  to  loudness  (ref.  12),  then 

Y =  koII " I  

where Y is the  loudness  (sones) and ko and 2 are constants. A loudness  level  L 
(phons) was defined by Stevens  (ref. 12) as 

L = 3 3 . 3  l o g g +  40 (57) 

for  an input frequency of 1000 hertz. For other  frequencies  the  coefficients  may be dif- 
ferent. By considering  equation (56) and  noting that II is a function of p and w, a 
more  general  equation  for  the  loudness  level is 

N 

L(p, w )  = 2 log - G(p) + 1 log - Q( 4 - Lm(w) P 
GO QO 
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where G(p) and Q(w) are, respectively,  functions of p  and w to be determined  from 
5; Go and Qo are reference  values;  the  constant 2 determines  the  loudness level 
rise rate as a function of sound  pressure;  the  constant 1, determines  the rise rate as 
a function of w; and  Lm(w) is a function of frequency  which  accounts  for  the  fact  that 
the  detection  threshold  occurs at a nonvanishing  sound pressure. (Note that  log  sig- 
nifies  logarithm  to  the  base 10. ) The  condition I ,  would imply that the  psycho- 
acoustic  conversion is frequency  dependent  and,  hence, that the  brain  introduces  an  ad- 
ditional  filtering effect. Similar  formulas  could be given  for  noisiness or annoyance  and 
other  psychoacoustic  phenomena.  Equation (58) finally  quantitatively relates subjective 
loudness  judgments  to  the  physical  sound-pressure input. 

For loudness  levels  L  greater  than 40 phons  (up to at least 110 phons) at 1000 
hertz, doubling the  loudness 9 corresponds  to a 10-phon increase in the  loudness level 
(ref. 3, p. 193; ref. 12), a 10-decibel  increase in intensity  level 'Y' (ref. 3, p. 186f; 
ref. 12), o r  tripling  the  sound  pressure p. For loudness  levels less than 40 phons,  the 
relation between  loudness and loudness  level is not so  simple. In this  range  the  loudness 
varies  to a much greater  degree as a function of loudness  level (ref. 3, p. 193; or 
ref. 4). 

decibel (3- to  12-percent  change in sound pressure  ratio)  for  sine waves at intensity 
levels  greater  than 30 decibels,  and  considerably  greater at lower  intensity  levels 
(ref. 3, p. 146). For impulsive  sounds  the  minimum  detectable  intensity level change 
appears  to be somewhat  greater. For example,  for  sonic boom N waves, changes  less 
than  2  decibels, or 25 percent  in  sound  pressure,  are  apparently  undetectable (ref. 27). 

P 

+ 2P 

The  minimum  detectable  intensity  level  change is generally between 0.25 and 1.0 

PARTICULAR  SOLUTIONS 

In calculating  the  loudness of various  inputs  the  choice of a time- or frequency- 
domain  calculation is decided  simply on the  basis of ease of calculation. At the  very 
least, if the  preceding  theory is valid, it must be capable of predicting  the  loudness 
levels of pure  tones  and  impulsive  inputs.  Thus,  these  examples will serve  to  illustrate 
the  initial  applications of the  theory. 

Pure Tone Input 

Assume  that 

(59) 
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where po is the  pressure  amplitude at the ear, Wo is the  driving  frequency,  and A is 
a phase  shift. As shown in appendix D, 

H 

tl >>- 
*O 

1 

equation (60) reduces  to 

that is, the  time-average power is proportional  to  the  pressure  intensity,  the  transmit- 
tance of the  complete  auditory  system,  the  square of the  averaging  time, and is inde- 
pendent of t. Inequality (eq. (61)) is, in fact,  satisfied by the  auditory  system. Ac- 
cording  to  Steudel  (ref. 4; ref. 14, p. 158), tl M ~ x I O - ~  second.  The  integration  time 
tl determined by Steudel is incorrect  because  the input signature,  an  impulse, was not 
of sufficient  duration  to  determine  the  true  integration  time.  More  recent  measure- 
ments  (refs.  6  and 28 to 30) indicate  that  the  integration  time is more  nearly  0.1  second, 
with possible  dependence on intensity. Von B6k6sy  adopted (ref. 11) the  value 
tl = 0.2  second.  Using this value, equations (62) a r e  valid if  wo >> 5, that is, if the 
driving  frequency is much greater than 1 hertz,  say 10 hertz  or  greater. 

In order  to  introduce  the  result  given by equation (62) in equation  (58),  let 

Go = - K RPr 1 2  2 
2 
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where  pr is a reference  sound  pressure  (pr = 2X10m4 dyne cm-2), and the  frequency- 
response  function H(w) peaks at the  frequency om. By introducing  the  preceding re- 
lations in equation (58) the  loudness  level of a pure  tone is, therefore,  given by 

Finally, by virtue of equation  (43), 

Note that  the  second  term on the  right-hand  side of equations (67) vanishes if wo = om. 
The  dependence of the  loudness  level Lo obtained  from  equation (67b) on sound 

pressure and frequency  should  correspond  with  Stevens  and  Davis'  response  curves 
(ref. 14, p. 124; or  ref. 15, p. 201). These  curves,  derived  from  data by Fletcher and 
Munson (ref. 1; ref. 3, p. 188), were obtained by using  pure  tones  supplied by ear- 
phones  with  sound pressures  measured  near  the  eardrum.  Intensity  levels  are  presented 
as a function of frequency  with  loudness  level as a parameter,  where  the  intensity  level 
2' is defined by 

T = 10 log@J 

The  curves of Stevens  and  Davis  differ  from  the better known Fletcher-Munson  curves 
(ref. 1; ref. 3, p. 188; or  ref. 15, p. 200). The  Fletcher-Munson  curves  correspond 
to  introducing  the  observer  into  the  sound  field  facing  the  source of sound after the free- 
field  sound  pressure  has  been  measured. A s  a result  the  Fletcher-Munson  curves  in- 
clude  diffraction of the  sound by the human  head.  The present  theory  does not  attempt 
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to  account  for  this  diffraction  phenomenon, but rather,  corresponds  closely  to  the ex- 
perimental  situation  represented by the  curves of Stevens  and  Davis.  The  theoretical 
and  experimental  results  will be compared  following  discussion of the  theoretical loud- 
ness of an  impulsive input. 

Impulsive  Input 

Let  the  sound  pressure be represented by 

where no is the  impulse. With the  impulse  response  given by equation (46), it is shown 
in  appendix  D  that  the  average power is given by 

When t = tl  the  result is especially  interesting  because it represents  the  situation 
where  the  integration  period  begins  with  the  impulse, and, hence, is the  period  associ- 
ated  with  maximum  loudness. For the human  auditory  system wl, w2 >> l/tl, s o  that 

By applying  equation (58), the  maximum  loudness  level is found to be 
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(w1 + w2>, 
L 6 0  ( R  ) = 1 P log(?7 + 1 ,  log - L  

w1 + 0 2 60 

where rr is a reference  impulse, is the  sum of the  cutoff  frequencies at the 

reference  pressure,  and L is a constant  loudness level which  accounts  for  the  fact 

that  the linear relation between  loudness  level  and  intensity  level  does not include  the 
coordinate  origin. 

60 

COMPARISON WITH EXPERIMENT 

Theoretical  and  experimental  curves of the  loudness level spectra  for  pure  tones, 
with  intensity  level 'Y' as parameter, are compared in figure 3. The test curves  are 
cross-plots of Stevens  and  Davis'  equal-loudness  curves. In the  form  displayed in fig- 
u re  3  the  similarity of the  curves  to  ordinary  filter  curves is evident.  Theoretical 
points  computed  for  1/3-octave  intervals  using  equation (67b) for  sinusoidal  inputs  have 
been  superposed for  comparison  purposes. 

In order  to fit Stevens  and  Davis'  response  curves,  the  constants Z,, wl, and w2 
were adjusted  to  obtain a best f i t  at each  intensity  level.  The "peak" frequency wm 
was not chosen  independently  despite  the fact that it represents  an  independent  constant. 
Rather, wm was assumed  to be the  geometric  mean of the cutoff frequencies w1 and 
w2; that is, wm = {<. This  assumption  causes  the  frequency-response  curves  to be 
symmetrical about wm on the  log-log  scale in figure 3. Despite  this  unnecessary re- 
striction  the  theoretical and  experimental  curves are found to be in very good agree- 
ment.  The two se ts  of curves  generally  differ by less  than 2 phons  over  the  entire  in- 
tensity  level  range of 10 to 130 decibels  and  audible  frequency  range.  The  greatest  dis- 
parity of the  results is 10  phons at the  highest  frequencies in the  midintensity-level (70 
to 90 db) range.  The 2-phon difference is certainly no greater  than  the  errors  induced 
by the  instrumentation, by averaging  results  (loudness level probable  error of the  order 
of 6 db  according  to ref. 31) from a large  number of tests (297 observations on 11 ob- 
servers), and by cross-plotting  the  response  curves  from  published  equal-loudness con- 
tours. In fact,  the  largest  disparity  might  result  primarily  from  the  experiment,  rather 
than  from  inadequacy of the  theory. 

By fitting  equation (67b) to  the test data  for  each input intensity  level a set of values 
of the  constants Z,, wl, 02, and wm are obtained  for  each  intensity  level.  Values of 
Z p  log(po/pr)2 - Lm(wm) and 1, as functions of intensity level have  been  plotted  in f i g -  

' ure  4 with .? = 10  phons. A similar plot  for ol, w2, and om is given  in  figure 5. P 
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Figure 3. - Psychoacoustic filter  curves  (individually  fit). 
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FigL ire 5. -Characteristic  frequencies as function of intensity level. 
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Note that in  most  cases  the  values of the  constants can be fit fairly well by straight  lines 
on the  log-log  plots,  although  the  scatter of the  values  for I ,  is excessive. In fig- 
ure  5 it is apparent  that  the  auditory bandwidth increases  markedly as the input intensity 
is increased. However, the  geometric  mean  frequency wm remains in the  frequency 
interval 500 to 2000 hertz  throughout  the  entire  intensity  level range of 10 to 130  deci- 
bels,  the  higher  geometric  mean  frequency  occurring at the  lower  intensity level. 

The  straight-line fits to  the  data in figures  4 and  5  can be formulated  to  provide a 
set of equations  which  determine  the  frequency  response  over  the  entire  intensity  and 
frequency  ranges  covered by the  data. Of course,  the  resulting  formulas  cannot be ex- 
pected  to fit the  experimental  data  nearly as well as the  individual  fitting  process  used  to 
obtain  figure 3. The  formulas  for  the  coefficients  determined by the  straight  lines in 
figures  4 and 5 are as follows: 

10  log(po/pr) 2 = 1.0030 T phons (7  3) 

Lm(wm) = 6 phons (74) 

1 ,  = 0.3636 T + 36.6,  phons (7  5) 

10g(ol/2~) = -0.0158 T + 3.1461 (7 6) 

l0g(w2/2r) = 0.003066 T + 3.7404  (77) 

log(wm/2~) = -0.004816 T + 3.  3222 (7 8) 

These  formulas in conjunction with equation (67b) determine  the  loudness  level  Lo as a 
function of the input sound  intensity  level T and frequency wo. Note that  the  values of 
the  auditory  constants are actually  functions of the  intensity  and  that 1 ,  # 1 = 10. 
From  this  inequality it follows  that  the  psychoacoustic  conversion  involves  additional 
filtering.  The  frequency-response  curves  predicted by using  the  formulas  above are 
compared in figure 6 with  the  experimental  curves.  The  disagreement between theory 
and  experiment is generally  much  less  than 10  phons,  which corresponds  to  loudnesses 
differing by a factor of 2. The disagreement  for any particular  intensity  level  may, of 
course, be reduced by slightly  manipulating  the  values of the  constants in equations (73) 
to (78). 

It is important  to be able  to  relate  the  loudness of various  pressure  signatures  to a 
single  reference input so  that  the  loudness of different  signatures  can be compared on a 
single  loudness  scale. It is most  desirable  to  relate  the  loudness of sine waves  and  im- 
pulses in this  manner. By virtue of Stevens' law (eq.  (56))  equally  loud  sine waves and 

P 
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Figure 6.  - Psychoacoustic filter  curves  (collectively  fit). 
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impulses  should  correspond  to a constant  intensity  level  difference  (which  might be zero) 
over  the  entire  range of intensities  for which the  law is valid.  Unfortunately, the  pro- 
duction of perfect  impulses is impossible.  Alternatively, input signatures  resembling 
impulses  can  be  produced  which  will  serve  to  illustrate how the sine wave  and  impulsive 
intensity levels corresponding  to  equal  loudness  levels are related.  For  example, 
Steudel (ref. 4) compared  the  amplitude  for  equal  loudness of an  exponentially  decaying 
finite-amplitude  impulse  with  that of a 1000-hertz  sine wave. The  initial rise time of 
the  impulse was unspecified but very  short in comparison  with  the  1-millisecond  time 
constant of the  exponential  decay.  For  equal  loudness levels the  intensity level of the 
impulse was found to be approximately 10 decibels  greater  than  that of the  1000-hertz 
sine wave over a wide range of intensities.  Alternatively,  for  equal input intensities  the 
loudness  level of the  1000-hertz  sine wave was 10  phons greater  than  that of the  impulse. 
Steudel's  results  (minus  the  data  points,  for  which  the  scatter is *lo phons) are effec- 
tively  exhibited in figure 7 .  By replacing  his  results  for  the  sine wave by those of 
Stevens  and  Davis  (adopted  from  Fletcher and Munson's tests) the  curves in figure 7 have 
been  based on scales with known reference  values,  whereas  Steudel's  original  curves 
were not. Steudel's  measurements  extended  only  up  to  loudness  levels of 100  phons. 

In figure 7, Steudel's  curve for the  exponentially  decaying  impulse is also compared 

Figure 7. - Relation between loudness  level and  intensity level for 1000-hertz 
sine wave and impulses. 
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with  the  predicted  loudness of a true  impulse  according  to  the  present  theory.  The rela- 
tion  between  intensity  and  loudness  level  for  the  impulse is given by equation  (72),  where 

T = 10 log(7ro/7rr) 2 

because 7ro cc po and 7rr a p,. The  loudness  level L6 is not  quite  proportional  to  the 
intensity  level T because of the  appearance of the  ratio of sums w1 + w2 in equa- 
tion (72). As noted  previously w1 and w2 are functions of T. The  curve shown is for 

I = 1 ,  = 10 phons 
P (80) 

L60 = phons 

(wl + w2) = 2n 6900 (82 1 
r 

where  the  selected  reference  used  to  determine (ol + w2) is T = 0 decibels  (cf.  fig. 4). 
r 

The  agreement between the  theoretical  and  experimental  curves is excellent  over  the  in- 
tensity  level  interval 55 to 115 decibels,  where  the  upper  value  corresponds  to  the  limit 
for which  Steudel  presented  data. 

COMPARISON  WITH OTHER THEORIES 

The present  theory  encompasses  some  existing  theories  and  formulas  for  loudness 
and  deviates  from  others. For example,  among  the  latter  category,  Steudel  (ref. 4) 
proposed a loudness  equation  based on the  square of the  impulse  integral;  that is, 

where  p = p when t = to, and  the  integral is to  be  maximized.  This  integral  correctly 
accounts  for  the  loudness when p = po throughout the  time  interval t; specifically, it 
indicates no response. It also  correctly  accounts  for  the  loudness of a step function as 
being  proportional  to  the  square of the  pressure  amplitude of the  step. However, more 
generally, it predicts  that all pressure  signatures  which  possess  the  same  amplitude  and 
impulse  over  the  integration  period  will  be  equally loud. Vast experience  with sonic 
booms  indicates that this result is incorrect.  Moreover,  the  loudness of continuous, 

0 
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statistically  stationary,  sounds is known to  be  proportional  to  the  acoustic  intensity, not 
to  the  impulse.  Thus,  Steudel's  equation  must  be  incorrect.  Biirck, Kotowski, and 
Lichte (ref. 5) criticized  Steudel's  formula on other  grounds. 

Biirck,  Kotowski, and  Lichte  frequency  analyzed  impulsive  sounds  in a manner 
bearing  some  similarity  to, but cruder  than, that adopted  herein.  They  assumed that 
the  mathematical  physics  was  linear  and  applied  Fourier  methods.  The  input  signature 
was  transformed  into  the  frequency  domain  and  mathematically  filtered by  an  ideal 
broad-band filter whose cutoff frequencies  were a function of the  expected  loudness. 
The  loudness  was  effectively  defined as the  square  root of the  transmitted  energy  in  the 
filter bandwidth. Zepler  and  Harel  (ref. 6) independently  repeated  Biirck, Kotowski, 
and  Lichte's  frequency-domain  approach  but  performed  nonideal  filtering  numerically 
l-lsing experimental  frequency  response  curves  for  humans,  and  defined  loudness as 
herein.  Errors,  debated  elsewhere (refs. 32 and  33), in Zepler  and Harel's experimen- 
tal procedure  led to ideas which  culminated  in  the  present  theory. 

Zepler  and  Harel's  frequency-domain  formulation  was  intended  to  apply  to  sonic 
booms,  which are  quasi-impulsive if the body producing  the  boom is sufficiently  short. 
Their  filtering  process is numerical, but in  the  theory  proposed  herein it is expressed 
by a simple  analytical  function.  Their  formula for the "weighted  energy  density'' is 
equivalent to  equation  (33b).  Equation  (33b) is valid if p(t) is initiated  and  effectively 
vanishes  within  the  period tl. On the  contrary,  the  amplitude-limited  ramp  function  se- 
lected by Zepler and Harel  possesses  maximum  amplitude,  equal  to  the  shock  over- .' 

pressure, at time tl. Because  the  effective  loudness-producing  portion of the  signature 
is Concentrated  in  the  time  interval (<<tl) occupied by the  shock,  equation  (33b)  might 
conceivably  be  valid  in this case  also. However, no attempt  will  be  made  herein  to  test 
the  validity of Zepler  and  Harel's  application of equation  (33b). 

A frequency-domain  formulation for the  annoyance of statistically  stationary  noise 
has  been proposed by Jones  (ref. 34). Jones'  formula is basically  equivalent  to  that of 
Zepler  and  Harel  for  loudness  and,  hence,  to  equation  (33b).  Presumably  equation  (29b), 
rather than equation  (33b), is the  correct  equation  for  steady  noise.  The two equations 
differ  in  that  equation  (33b)  involves  the  ordinary  pressure  spectrum  whereas  equation 
(29b) involves  the  running pressure  spectra  associated  with  the  initiation  and  termination 
of the  auditory  integration  period. If t he  integration  process is extended  from  the  finite 
interval tl (EO. 2 sec)  to  the  infinite  interval ( - m , m )  equation  (29b)  reduces  to  equation 
(33h). The  assumption  that  the  sound  intensity  spectrum I P(w) I over all time is 
equivalent .to the  difference of running  intensity  spectra 1 P(o, t) I over  the  period tl 
is tacit  in all noise  tests, but  apparently  has  never  been  verified. 

Unlike the  present  analysis,  those of Zepler  and  Harel  (ref. 6) and  Jones  (ref.  34) 
do not attempt  to link the  mathematics  to  operations  which  occur  within  the  auditory 
sy= J e em. 
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CONCLUDING REMARKS 

A  few general  remarks  should  be  made  regarding  implications of present  loudness 
theories. 

The  claimed  successes of the  frequency-domain  theories of Zepler  and Harel for 
impulsive  sonic  booms  and  Jones  for  continuous  noise  indicate  that  the  validity of the 
present  theory  may  be  quite  general. In particular,  Jones'  results  indicate  that  the 
existing  multitude of schemes  and units for  evaluating  the  subjective  aspects of noise 
such as loudness  and  annoyance  may  be  irrelevant. It is suggested  from  the  present 
theory that Jones'  introduction of still another  noise unit, "perceived  sound  level, '' 
may  also  be  unnecessary.  Stevens'  loudness  and  loudness  level  units,  sones  and phons, 
respectively,  appear  more  than  sufficient. 

An important  question  in  auditory  studies  concerns  the  extent  to  which  the  auditory 
system is nonlinear.  The  present  theory,  in  conjunction  with  the  results of Zepler  and 
Harel and  particularly  those of Jones,  substantiates  the  conclusion of Biirck, Kotowski, 
and  Lichte  that  the  auditory  system, at least that  part  preceding  the  brain, is effectively 
linear  with  regard  to  loudness.  The  nonlinear  part of the  system is involved  in  the 
psychoacoustic  conversion  which  occurs  in  the  brain.  This  does  not  mean  that  the  action 
of the ear and  nervous  system is completely  linear,  but only that  possible  nonlinearities 
have a negligible  effect on loudness. 

Although Zwislocki's  theory (ref. 7) of temporal  auditory  summation is incorporated 
in  the  present  theory,  the  theoretical  constants o1 and w2 (in  the  present  notation) are 

greatly  from  those  given by Zwislocki.  The  difference  in  the  values of the  constants  may 
result  simply  from  the  fact that Zwislocki's  values  were  calculated  from  Galambos'  mea- 
surements of stapedius  muscle  contractions  in  response  to  electric  shocks  to  the  medulla 
rather  than  auditory  hair  cell  electrical  outputs  from  pressure  disturbances. 

3 shown  herein  to  be  response cutoff frequencies  and  have  values  (fig. 5) which  differ 

Finally, it should  be  recognized that the  present  theory  obviously  does not include 
all known effects on loudness. For example,  auditory  fatigue (ref. 3, p. 272f) and  the 
"cocktail  party"  effect a r e  two phenomena not incorporated  in  the  present  theory. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration 

Cleveland, Ohio, June 12, 1969, 
129-01-07-06-22. 
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APPENDIX A 

SYMBOLS 

A 

I 

LO 

L6 0 

coefficient 

speed of sound 

function of frequency 

function of time 

reference  sound  pressure  function 

sound pressure function 

frequency  response 

"running"  frequency  response 

impulse  response 

fi 
electric  current  spectrum 

"running" electric  current  spectrum 

time-dependent  electric  current 

coefficient  in  Stevens'  psychophysical law 

coefficient  in  Fechner's  psychophysical law 

loudness  coefficient 

loudness  level,  phons (ref. 1000-Hz sine  wave at intensity W 

loudness  level  corresponding  to  vanishing  intensity  level 

loudness  level at peak  response  frequency  corresponding  to  vanishing  inten- 
sity  level 

loudness  level of sine  wave  pressure  input 

impulse  loudness  level  corresponding  to  vanishing  intensity  level 

loudness,  sone  (loudness of 1000-Hz sine  wave 40 db  above  threshold refer- 
ence  intensity) 

34 



In 

n 

P 

T 

F 

t, t̂  

tb 

vn 
Y 

CY n 
A 

AW 

6 

natural  logarithm 

common  logarithm 

loudness  level  pressure  coefficient,  phons 

loudness  level  frequency  coefficient,  phons/decade 

exponent in  Stevens'  psychophysical law 

integer 

pressure  spectrum 

"running" pressure  spectrum 

acoustic  pressure 

input pressure  amplitude at the  ear 

pressure  time  history, or signature 

reference  frequency  function 

frequency  function 

electrical  resistance 

real part  

duration of impulse 

time  duration 

time 

input  initiation  time 

effective  termination  time of input 

integration  period,  auditory  integration  period 

velocity  component  normal  to  control  surface 

angular  frequency  (dummy  variable) 

Fourier  coefficient 

phase  angle 

radian  frequency  increment 

unit  impulse  function 

t - ; i  

wot1/2r 

unit  step  function 
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tan-' (w/wl) 

tan- ' (w/w2) 

units  conversion  factor  relating  acoustic  pressure  and  electric  current 
A 

7 -  7 

electrical  power 

electrical  power output from  hair  cells 

input  impulse 

reference  impulse 

mass  density 

time  (dummy  variables) 

acoustic  intensity  level,  db (ref. W cm-2) 

magnitude of physical  stimulus  in  psychophysical law 

acoustic  intensity 

psychological  magnitude  in  psychophysical law 

angular  frequency 

angular  frequency at which auditory  frequency  response  peaks  for a given 
input  amplitude 

auditory  input  frequency 

auditory  lower cutoff frequency 

auditory  upper cutoff frequency 

Fourier  transform 

Subscripts : 

C complete  auditory  system 

r reference 

Superscripts: 

* complex  conjugate 
- 

infinite  time  average 
N finite time  average 
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APPENDIX B 

RUNNING CURRENT SPECTRUM 

In order  to  express  the  running  current  spectrum J (w,  t) as a function of the  input 
sound pressure  p(t), or  its spectrum B(w, t), note that 

~ ( w ,  t) - e(t - T)j(7) (18) 

Because  h(t) is causal  (ref. 16, p. 85), equations  (7)  may  be  written as 

j(7) = K L" e( ?)h( ?)p( 7 - 

Using  equation  (7b'), 

Let 

Then, 

< =  7 -  ^7 

= K L* e(t - ?)H(w, t - ?)p(+)e -io? d+ (20a') 

An alternative  expression  for J (w,  t) is obtained  using  equation (7a'). Thus, 
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where 

Finally, 

V =  t - 7 

(20b') 

38 



APPENDIX C 

FREQUENCY -DOMAIN  REPRESENTATION OF ELECTRIC POWER 

In the  time  domain  the  electric  power  corresponding  to  the  information output of the 
auditory  nerve  endings is given  by 

I"j.. 
where  the  impulsive  transients  contained  in equation (lo ') ,  but not in  equation ( lo) ,  a r e  
unphysical  and are  to  be  neglected.  The  Fourier  transform of the first term  in  the  inte- 
grand  in  equation (10') is given  by 

- [e(t - T ) j (  T ) ]  - i w J ( w ,  t) d 
dT 

Hence,  the  frequency-domain  representation of the  integral of the first term  in  the  inte- 
grand  in  equation (10') is 

= (&y Lm dw . wJ(w,  t) Jm -00 dw' . w'J*(w', t) - i ( o ' - w ) T  

= (&) Lw d o .  wJ(w, t) J" -00 dm'.  w'J*(w', t )6(w7 - w )  
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or  

By repeating this process  with  respect  to  the  second  term  in  the  integrand  in  equation 
(18') and then  introducing  the two results  into  equation (lo'), it follows  that 

which is the  desired  frequency-domain  representation  for z(t). 
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APPENDIX D 

POWER OUTPUT FOR VARIOUS  INPUTS 

Pure   Tone 

Time-domain  analysis. - Assume that 

p(t) = po COS(W0t - A) 

i(wot-A) -i(wot-A) 
+ e  

2 1 
For abbreviation, let 

so that equation  (27a) for the power  becomes 

By introducing  the  right-hand  side of equation (Dl)  in equation  (D2), it results  that 

i(woT-A) -i(wOT-A) 
- H(-wo)e 

2 

s o  that 

2 2  2i(woT-A) 
lII2 = !@k! [(H(YO)l2 - ReH2(w0)e 

2 1 
because 



Equation (D6) is valid  for a symmetrical filter. The last two equations a r e  valid if h(t) 
is real. When equation (D5) is introduced  in  equation (D3), it follows  that 

Frequency-domain  analysis. - With p(t)  given  by  equation (59) and I = j(7) d 

given by equation  (D4),  let I be  expanded as a Fourier  series, 
- 

03 
2 .irin-r/t 

1 = ane  

where 

From equation (D9) it follows  that 

because an is independent of T .  Hence,  considering  equation (D3), the  power is given 
by 

2 

From  equations (D4) and (DlO), 
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-i(wot-A) - 2 nint/t 
+ H(-wo)e 1 

Hence, 

2 lwo t1  - 2 m r 2  + (coot1 + 2 d - 2 1  

2i( wot- A) 

+ H 2 (-w,)e -2i(wot-A) ( 1 - e  i ~ , t ~ ) ~ ]  

Applying the formula (ref. 35) 

m 

with 

(D16) 
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.,. . .. . . . .. .. ._ . 

there  results 

Also, using  the  formula (ref. 36) 

m 

n= 1 Y 

it follows  that 

-1 1 

n=- 00 

By introducing  the sums given  by  equations (Dl?) and (D19) in  equation (D14) and  then 
introducing  the  result  in  equation (D12), equation (60) is obtained. 

Impulse 

Time-  domain  analysis. - Assume  that 

P(t> = n o w  

where no is the  impulse.  The  electric  power is given by equation (D3), where 

By introducing  equation (69) in  equation (D20), it follows tha 

I = 71 - h(t) = nOhC(t) d 
dt 

.t 

where  h(t) is given  by  equation (46). Hence, 
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e(t) = K Rtl (lt ( 1 I 2 d 7 +  so dT) 
t-tl 

where  the  second  integral  in  the last expression  must  vanish if t 5 tl because  h(t) is 
causal. By performing  the  indicated  integrations  the  results are 

N 

rI(t 5 0) = 0 (D24a) 

w1 + 0 2 1 'J 
These  three  equations  may  be  combined  to  yield  equation (70). 

Because wl, w2 >> l/tl, it follows  from  equation (D24b), o r  (D24c),  that, when 

1' t = t  

Frequency-domain  analysis. - Because  p(t) is impulsive  and  h(t) is quasi- 
impulsive,  equation (53) may  be  used  to  evaluate z. Thus, by virtue of equations (11) 
and (69), 
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P(w) = a. 

Hence,  equation (53) becomes 

which  results  in  (ref.  37) 

in  agreement  with  the  result  from  the  time-domain  analysis. 
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